ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.01311
11
23

Learning without feedback: Fixed random learning signals allow for feedforward training of deep neural networks

3 September 2019
Charlotte Frenkel
M. Lefebvre
D. Bol
ArXivPDFHTML
Abstract

While the backpropagation of error algorithm enables deep neural network training, it implies (i) bidirectional synaptic weight transport and (ii) update locking until the forward and backward passes are completed. Not only do these constraints preclude biological plausibility, but they also hinder the development of low-cost adaptive smart sensors at the edge, as they severely constrain memory accesses and entail buffering overhead. In this work, we show that the one-hot-encoded labels provided in supervised classification problems, denoted as targets, can be viewed as a proxy for the error sign. Therefore, their fixed random projections enable a layerwise feedforward training of the hidden layers, thus solving the weight transport and update locking problems while relaxing the computational and memory requirements. Based on these observations, we propose the direct random target projection (DRTP) algorithm and demonstrate that it provides a tradeoff between accuracy and computational cost that is suitable for adaptive edge computing devices.

View on arXiv
Comments on this paper