ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1909.00164
73
19
v1v2 (latest)

Named Entity Recognition Only from Word Embeddings

31 August 2019
Ying Luo
Hai Zhao
Junlang Zhan
ArXiv (abs)PDFHTML
Abstract

Deep neural network models have helped named entity (NE) recognition achieve amazing performance without handcrafting features. However, existing systems require large amounts of human annotated training data. Efforts have been made to replace human annotations with external knowledge (e.g., NE dictionary, part-of-speech tags), while it is another challenge to obtain such effective resources. In this work, we propose a fully unsupervised NE recognition model which only needs to take informative clues from pre-trained word embeddings. We first apply Gaussian Hidden Markov Model and Deep Autoencoding Gaussian Mixture Model on word embeddings for entity span detection and type prediction, and then further design an instance selector based on reinforcement learning to distinguish positive sentences from noisy sentences and refine these coarse-grained annotations through neural networks. Extensive experiments on CoNLL benchmark datasets demonstrate that our proposed light NE recognition model achieves remarkable performance without using any annotated lexicon or corpus.

View on arXiv
Comments on this paper