ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.10907
18
13
v1v2v3 (latest)

DFPENet-geology: A Deep Learning Framework for High Precision Recognition and Segmentation of Co-seismic Landslides

28 August 2019
Qingsong Xu
Chaojun Ouyang
Tianhai Jiang
Xuanmei Fan
Duoxiang Cheng
    AI4CE
ArXiv (abs)PDFHTML
Abstract

The following lists two main reasons for withdrawal for the public. 1. There are some problems in the method and results, and there is a lot of room for improvement. In terms of method, "Pre-trained Datasets (PD)" represents selecting a small amount from the online test set, which easily causes the model to overfit the online test set and could not obtain robust performance. More importantly, the proposed DFPENet has a high redundancy by combining the Attention Gate Mechanism and Gate Convolution Networks, and we need to revisit the section of geological feature fusion, in terms of results, we need to further improve and refine. 2. arXiv is an open-access repository of electronic preprints without peer reviews. However, for our own research, we need experts to provide comments on my work whether negative or positive. I then would use their comments to significantly improve this manuscript. Therefore, we finally decided to withdraw this manuscript in arXiv, and we will update to arXiv with the final accepted manuscript to facilitate more researchers to use our proposed comprehensive and general scheme to recognize and segment seismic landslides more efficiently.

View on arXiv
Comments on this paper