ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.09442
11
30

Deep Concept-wise Temporal Convolutional Networks for Action Localization

26 August 2019
Xin Li
Tianwei Lin
Xiao-Chang Liu
Chuang Gan
W. Zuo
Chong Li
Xiang Long
Dongliang He
Fu Li
Shilei Wen
ArXivPDFHTML
Abstract

Existing action localization approaches adopt shallow temporal convolutional networks (\ie, TCN) on 1D feature map extracted from video frames. In this paper, we empirically find that stacking more conventional temporal convolution layers actually deteriorates action classification performance, possibly ascribing to that all channels of 1D feature map, which generally are highly abstract and can be regarded as latent concepts, are excessively recombined in temporal convolution. To address this issue, we introduce a novel concept-wise temporal convolution (CTC) layer as an alternative to conventional temporal convolution layer for training deeper action localization networks. Instead of recombining latent concepts, CTC layer deploys a number of temporal filters to each concept separately with shared filter parameters across concepts. Thus can capture common temporal patterns of different concepts and significantly enrich representation ability. Via stacking CTC layers, we proposed a deep concept-wise temporal convolutional network (C-TCN), which boosts the state-of-the-art action localization performance on THUMOS'14 from 42.8 to 52.1 in terms of mAP(\%), achieving a relative improvement of 21.7\%. Favorable result is also obtained on ActivityNet.

View on arXiv
Comments on this paper