ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.09364
11
0

Adversarial Edit Attacks for Tree Data

25 August 2019
Benjamin Paassen
    AAML
ArXivPDFHTML
Abstract

Many machine learning models can be attacked with adversarial examples, i.e. inputs close to correctly classified examples that are classified incorrectly. However, most research on adversarial attacks to date is limited to vectorial data, in particular image data. In this contribution, we extend the field by introducing adversarial edit attacks for tree-structured data with potential applications in medicine and automated program analysis. Our approach solely relies on the tree edit distance and a logarithmic number of black-box queries to the attacked classifier without any need for gradient information. We evaluate our approach on two programming and two biomedical data sets and show that many established tree classifiers, like tree-kernel-SVMs and recursive neural networks, can be attacked effectively.

View on arXiv
Comments on this paper