ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.08419
40
0
v1v2v3 (latest)

NE-LP: Normalized Entropy and Loss Prediction based Sampling for Active Learning in Chinese Word Segmentation on EHRs

22 August 2019
Tingting Cai
Zhiyuan Ma
Hong Zheng
Ping He
Ju Gao
Yangming Zhou
ArXiv (abs)PDFHTML
Abstract

Electronic Health Records (EHRs) in hospital information systems contain patients' diagnosis and treatments, so EHRs are essential to clinical data mining. Of all the tasks in the mining process, Chinese Word Segmentation (CWS) is a fundamental and important one, and most state-of-the-art methods greatly rely on large-scale of manually-annotated data. Since annotation is time-consuming and expensive, efforts have been devoted to techniques, such as active learning, to locate the most informative samples for modeling. In this paper, we follow the trend and present an active learning method for CWS in EHRs. Specifically, a new sampling strategy combining Normalized Entropy with Loss Prediction (NE-LP) is proposed to select the most representative data. Meanwhile, to minimize the computational cost of learning, we propose a joint model including a word segmenter and a loss prediction model. Furthermore, to capture interactions between adjacent characters, bigram features are also applied in the joint model. To illustrate the effectiveness of NE-LP, we conducted experiments on EHRs collected from the Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine. The results demonstrate that the proposed sampling strategy outperforms conventional uncertainty-based strategies and our proposed model also achieves better results than other reference methods including both open-source CWS tools and widely-used models.

View on arXiv
Comments on this paper