ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.05542
22
10

Improving Randomized Learning of Feedforward Neural Networks by Appropriate Generation of Random Parameters

15 August 2019
Grzegorz Dudek
    ODL
ArXivPDFHTML
Abstract

In this work, a method of random parameters generation for randomized learning of a single-hidden-layer feedforward neural network is proposed. The method firstly, randomly selects the slope angles of the hidden neurons activation functions from an interval adjusted to the target function, then randomly rotates the activation functions, and finally distributes them across the input space. For complex target functions the proposed method gives better results than the approach commonly used in practice, where the random parameters are selected from the fixed interval. This is because it introduces the steepest fragments of the activation functions into the input hypercube, avoiding their saturation fragments.

View on arXiv
Comments on this paper