ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.02650
6
2

Regression Constraint for an Explainable Cervical Cancer Classifier

7 August 2019
Antoine Pirovano
Leandro Giordano Almeida
Saïd Ladjal
ArXivPDFHTML
Abstract

This article adresses the problem of automatic squamous cells classification for cervical cancer screening using Deep Learning methods. We study different architectures on a public dataset called Herlev dataset, which consists in classifying cells, obtained by cervical pap smear, regarding the severity of the abnormalities they represent. Furthermore, we use an attribution method to understand which cytomorphological features are actually learned as discriminative to classify severity of the abnormalities. Through this paper, we show how we trained a performant classifier: 74.5\% accuracy on severity classification and 94\% accuracy on normal/abnormal classification.

View on arXiv
Comments on this paper