ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01623
25
37

Modeling Event Propagation via Graph Biased Temporal Point Process

5 August 2019
Weichang Wu
Huanxi Liu
Xiaohu Zhang
Yu Liu
H. Zha
ArXivPDFHTML
Abstract

Temporal point process is widely used for sequential data modeling. In this paper, we focus on the problem of modeling sequential event propagation in graph, such as retweeting by social network users, news transmitting between websites, etc. Given a collection of event propagation sequences, conventional point process model consider only the event history, i.e. embed event history into a vector, not the latent graph structure. We propose a Graph Biased Temporal Point Process (GBTPP) leveraging the structural information from graph representation learning, where the direct influence between nodes and indirect influence from event history is modeled respectively. Moreover, the learned node embedding vector is also integrated into the embedded event history as side information. Experiments on a synthetic dataset and two real-world datasets show the efficacy of our model compared to conventional methods and state-of-the-art.

View on arXiv
Comments on this paper