ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01570
37
71

Revisiting Feature Alignment for One-stage Object Detection

5 August 2019
Yuntao Chen
Chenxia Han
Naiyan Wang
Zhaoxiang Zhang
    ObjD
ArXivPDFHTML
Abstract

Recently, one-stage object detectors gain much attention due to their simplicity in practice. Its fully convolutional nature greatly reduces the difficulty of training and deployment compared with two-stage detectors which require NMS and sorting for the proposal stage. However, a fundamental issue lies in all one-stage detectors is the misalignment between anchor boxes and convolutional features, which significantly hinders the performance of one-stage detectors. In this work, we first reveal the deep connection between the widely used im2col operator and the RoIAlign operator. Guided by this illuminating observation, we propose a RoIConv operator which aligns the features and its corresponding anchors in one-stage detection in a principled way. We then design a fully convolutional AlignDet architecture which combines the flexibility of learned anchors and the preciseness of aligned features. Specifically, our AlignDet achieves a state-of-the-art mAP of 44.1 on the COCO test-dev with ResNeXt-101 backbone.

View on arXiv
Comments on this paper