ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1908.01323
22
151

ARGAN: Attentive Recurrent Generative Adversarial Network for Shadow Detection and Removal

4 August 2019
Bin Ding
Chengjiang Long
Ling Zhang
Chunxia Xiao
    GAN
    3DH
ArXivPDFHTML
Abstract

In this paper we propose an attentive recurrent generative adversarial network (ARGAN) to detect and remove shadows in an image. The generator consists of multiple progressive steps. At each step a shadow attention detector is firstly exploited to generate an attention map which specifies shadow regions in the input image.Given the attention map, a negative residual by a shadow remover encoder will recover a shadow-lighter or even a shadow-free image. A discriminator is designed to classify whether the output image in the last progressive step is real or fake. Moreover, ARGAN is suitable to be trained with a semi-supervised strategy to make full use of sufficient unsupervised data. The experiments on four public datasets have demonstrated that our ARGAN is robust to detect both simple and complex shadows and to produce more realistic shadow removal results. It outperforms the state-of-the-art methods, especially in detail of recovering shadow areas.

View on arXiv
Comments on this paper