ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.13319
56
18
v1v2 (latest)

VASSL: A Visual Analytics Toolkit for Social Spambot Labeling

31 July 2019
Mosab Khayat
M. Karimzadeh
Jieqiong Zhao
D. Ebert
ArXiv (abs)PDFHTML
Abstract

Social media platforms such as Twitter are filled with social spambots. Detecting these malicious accounts is essential, yet challenging, as they continually evolve and evade traditional detection techniques. In this work, we propose VASSL, a visual analytics system that assists in the process of detecting and labeling spambots. Our tool enhances the performance and scalability of manual labeling by providing multiple connected views and utilizing dimensionality reduction, sentiment analysis and topic modeling techniques, which offer new insights that enable the identification of spambots. The system allows users to select and analyze groups of accounts in an interactive manner, which enables the detection of spambots that may not be identified when examined individually. We conducted a user study to objectively evaluate the performance of VASSL users, as well as capturing subjective opinions about the usefulness and the ease of use of the tool.

View on arXiv
Comments on this paper