ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12896
11
2

Safe Augmentation: Learning Task-Specific Transformations from Data

30 July 2019
Irynei Baran
Orest Kupyn
A. Kravchenko
ArXivPDFHTML
Abstract

Data augmentation is widely used as a part of the training process applied to deep learning models, especially in the computer vision domain. Currently, common data augmentation techniques are designed manually. Therefore they require expert knowledge and time. Moreover, augmentations are dataset-specific, and the optimal augmentations set on a specific dataset has limited transferability to others. We present a simple and explainable method called Safe Augmentation\textbf{Safe Augmentation}Safe Augmentation that can learn task-specific data augmentation techniques that do not change the data distribution and improve the generalization of the model. We propose to use safe augmentation in two ways: for model fine-tuning and along with other augmentation techniques. Our method is model-agnostic, easy to implement, and achieves better accuracy on CIFAR-10, CIFAR-100, SVHN, Tiny ImageNet, and Cityscapes datasets comparing to baseline augmentation techniques. The code is available at \href\href{https://github.com/Irynei/SafeAugmentation}{https://github.com/Irynei/SafeAugmentation}\href.

View on arXiv
Comments on this paper