ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12189
19
22

Bandits with Feedback Graphs and Switching Costs

29 July 2019
R. Arora
T. V. Marinov
M. Mohri
ArXivPDFHTML
Abstract

We study the adversarial multi-armed bandit problem where partial observations are available and where, in addition to the loss incurred for each action, a \emph{switching cost} is incurred for shifting to a new action. All previously known results incur a factor proportional to the independence number of the feedback graph. We give a new algorithm whose regret guarantee depends only on the domination number of the graph. We further supplement that result with a lower bound. Finally, we also give a new algorithm with improved policy regret bounds when partial counterfactual feedback is available.

View on arXiv
Comments on this paper