ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.12165
14
2

On the Realization and Analysis of Circular Harmonic Transforms for Feature Detection

29 July 2019
H. L. Kennedy
ArXivPDFHTML
Abstract

Circular-harmonic spectra are a compact representation of local image features in two dimensions. It is well known that the computational complexity of such transforms is greatly reduced when polar separability is exploited in steerable filter-banks. Further simplifications are possible when Cartesian separability is incorporated using the radial apodization (i.e. weight, window, or taper) described here, as a consequence of the Laguerre/Hermite correspondence over polar/Cartesian coordinates. The chosen form also mitigates undesirable discretization artefacts due to angular aliasing. The possible utility of circular-harmonic spectra for the description of simple features is illustrated using real data from an airborne electro-optic sensor. The spectrum is deployed in a test-statistic to detect and characterize corners of arbitrary angle and orientation (i.e. wedges). The test-statistic considers uncertainty due to finite sampling and clutter/noise.

View on arXiv
Comments on this paper