ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.10235
23
37

Predicting Different Types of Conversions with Multi-Task Learning in Online Advertising

24 July 2019
Junwei Pan
Yizhi Mao
A. L. Ruiz
Yu Sun
Aaron Flores
ArXivPDFHTML
Abstract

Conversion prediction plays an important role in online advertising since Cost-Per-Action (CPA) has become one of the primary campaign performance objectives in the industry. Unlike click prediction, conversions have different types in nature, and each type may be associated with different decisive factors. In this paper, we formulate conversion prediction as a multi-task learning problem, so that the prediction models for different types of conversions can be learned together. These models share feature representations, but have their specific parameters, providing the benefit of information-sharing across all tasks. We then propose Multi-Task Field-weighted Factorization Machine (MT-FwFM) to solve these tasks jointly. Our experiment results show that, compared with two state-of-the-art models, MT-FwFM improve the AUC by 0.74% and 0.84% on two conversion types, and the weighted AUC across all conversion types is also improved by 0.50%.

View on arXiv
Comments on this paper