ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.09724
14
4

Towards Unsupervised Grammatical Error Correction using Statistical Machine Translation with Synthetic Comparable Corpus

23 July 2019
Satoru Katsumata
Mamoru Komachi
ArXivPDFHTML
Abstract

We introduce unsupervised techniques based on phrase-based statistical machine translation for grammatical error correction (GEC) trained on a pseudo learner corpus created by Google Translation. We verified our GEC system through experiments on various GEC dataset, includi ng a low resource track of the shared task at Building Educational Applications 2019 (BEA 2019). As a result, we achieved an F_0.5 score of 28.31 points with the test data of the low resource track.

View on arXiv
Comments on this paper