Aesthetics are critically important to market acceptance. In the automotive
industry, an improved aesthetic design can boost sales by 30% or more. Firms
invest heavily in designing and testing aesthetics. A single automotive "theme
clinic" can cost over 100,000,andhundredsareconductedannually.Weproposeamodeltoaugmentthecommonly−usedaestheticdesignprocessbypredictingaestheticscoresandautomaticallygeneratinginnovativeandappealingproductdesigns.Themodelcombinesaprobabilisticvariationalautoencoder(VAE)withadversarialcomponentsfromgenerativeadversarialnetworks(GAN)andasupervisedlearningcomponent.Wetrainandevaluatethemodelwithdatafromanautomotivepartner−imagesof203SUVsevaluatedbytargetedconsumersand180,000high−qualityunratedimages.Ourmodelpredictswelltheappealofnewaestheticdesigns−43.5substantialimprovementoverconventionalmachinelearningmodelsandpretraineddeepneuralnetworks.Newautomotivedesignsaregeneratedinacontrollablemannerforusebydesignteams.Weempiricallyverifythatautomaticallygenerateddesignsare(1)appealingtoconsumersand(2)resembledesignswhichwereintroducedtothemarketfiveyearsafterourdatawerecollected.Weprovideanadditionalproof−of−conceptapplicationusingopensourceimagesofdiningroomchairs.