ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.07477
30
62

AVDNet: A Small-Sized Vehicle Detection Network for Aerial Visual Data

17 July 2019
Murari Mandal
Manal Shah
P. Meena
S. Devi
Santosh Kumar Vipparthi
    ObjD
ArXivPDFHTML
Abstract

Detection of small-sized targets in aerial views is a challenging task due to the smallness of vehicle size, complex background, and monotonic object appearances. In this letter, we propose a one-stage vehicle detection network (AVDNet) to robustly detect small-sized vehicles in aerial scenes. In AVDNet, we introduced ConvRes residual blocks at multiple scales to alleviate the problem of vanishing features for smaller objects caused because of the inclusion of deeper convolutional layers. These residual blocks, along with enlarged output feature map, ensure the robust representation of the salient features for small sized objects. Furthermore, we proposed a recurrent-feature aware visualization (RFAV) technique to analyze the network behavior. We also created a new airborne image data set (ABD) by annotating 1396 new objects in 79 aerial images for our experiments. The effectiveness of AVDNet is validated on VEDAI, DLR- 3K, DOTA, and the combined (VEDAI, DLR-3K, DOTA, and ABD) data set. Experimental results demonstrate the significant performance improvement of the proposed method over state-of-the-art detection techniques in terms of mAP, computation, and space complexity.

View on arXiv
Comments on this paper