ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06639
19
73

Integrating the Data Augmentation Scheme with Various Classifiers for Acoustic Scene Modeling

15 July 2019
Hangting Chen
Zuozhen Liu
Zongming Liu
Pengyuan Zhang
Yonghong Yan
ArXivPDFHTML
Abstract

This technical report describes the IOA team's submission for TASK1A of DCASE2019 challenge. Our acoustic scene classification (ASC) system adopts a data augmentation scheme employing generative adversary networks. Two major classifiers, 1D deep convolutional neural network integrated with scalogram features and 2D fully convolutional neural network integrated with Mel filter bank features, are deployed in the scheme. Other approaches, such as adversary city adaptation, temporal module based on discrete cosine transform and hybrid architectures, have been developed for further fusion. The results of our experiments indicates that the final fusion systems A-D could achieve an accuracy higher than 85% on the officially provided fold 1 evaluation dataset.

View on arXiv
Comments on this paper