ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.06536
10
16

Federated Reinforcement Distillation with Proxy Experience Memory

15 July 2019
Han Cha
Jihong Park
Hyesung Kim
Seong-Lyun Kim
M. Bennis
ArXivPDFHTML
Abstract

In distributed reinforcement learning, it is common to exchange the experience memory of each agent and thereby collectively train their local models. The experience memory, however, contains all the preceding state observations and their corresponding policies of the host agent, which may violate the privacy of the agent. To avoid this problem, in this work, we propose a privacy-preserving distributed reinforcement learning (RL) framework, termed federated reinforcement distillation (FRD). The key idea is to exchange a proxy experience memory comprising a pre-arranged set of states and time-averaged policies, thereby preserving the privacy of actual experiences. Based on an advantage actor-critic RL architecture, we numerically evaluate the effectiveness of FRD and investigate how the performance of FRD is affected by the proxy memory structure and different memory exchanging rules.

View on arXiv
Comments on this paper