16
0

A Convergence Result for Regularized Actor-Critic Methods

Abstract

In this paper, we present a probability one convergence proof, under suitable conditions, of a certain class of actor-critic algorithms for finding approximate solutions to entropy-regularized MDPs using the machinery of stochastic approximation. To obtain this overall result, we prove the convergence of policy evaluation with general regularizers when using linear approximation architectures and show convergence of entropy-regularized policy improvement.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.