ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.04155
139
259
v1v2v3v4v5 (latest)

Multivariate Time Series Imputation with Variational Autoencoders

9 July 2019
Vincent Fortuin
Dmitry Baranchuk
Gunnar Rätsch
    BDLAI4TS
ArXiv (abs)PDFHTML
Abstract

Multivariate time series with missing values are common in many areas, for instance in healthcare and finance. To face this problem, modern data imputation approaches should (a) be tailored to sequential data, (b) deal with high dimensional and complex data distributions, and (c) be based on the probabilistic modeling paradigm for interpretability and confidence assessment. However, many current approaches fall short in at least one of these aspects. Drawing on advances in deep learning and scalable probabilistic modeling, we propose a new deep sequential variational autoencoder approach for dimensionality reduction and data imputation. Temporal dependencies are modeled with a Gaussian process prior and a Cauchy kernel to reflect multi-scale dynamics in the latent space. We furthermore use a structured variational inference distribution that improves the scalability of the approach. We demonstrate that our model exhibits superior imputation performance on benchmark tasks and challenging real-world medical data.

View on arXiv
Comments on this paper