ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.03248
32
3
v1v2 (latest)

Tree-gated Deep Regressor Ensemble For Face Alignment In The Wild

7 July 2019
Estèphe Arnaud
Arnaud Dapogny
Kévin Bailly
    CVBM
ArXiv (abs)PDFHTML
Abstract

Face alignment consists in aligning a shape model on a face in an image. It is an active domain in computer vision as it is a preprocessing for applications like facial expression recognition, face recognition and tracking, face animation, etc. Current state-of-the-art methods already perform well on "easy" datasets, i.e. those that present moderate variations in head pose, expression, illumination or partial occlusions, but may not be robust to "in-the-wild" data. In this paper, we address this problem by using an ensemble of deep regressors instead of a single large regressor. Furthermore, instead of averaging the outputs of each regressor, we propose an adaptive weighting scheme that uses a tree-structured gate. Experiments on several challenging face datasets demonstrate that our approach outperforms the state-of-the-art methods.

View on arXiv
Comments on this paper