ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1907.02098
22
8
v1v2 (latest)

Preserving physically important variables in optimal event selections: A case study in Higgs physics

3 July 2019
P. Windischhofer
M. Zgubič
D. Bortoletto
ArXiv (abs)PDFHTML
Abstract

Analyses of collider data, often assisted by modern Machine Learning methods, condense a number of observables into a few powerful discriminants for the separation of the targeted signal process from the contributing backgrounds. These discriminants are highly correlated with important physical observables; using them in the event selection thus leads to the distortion of physically relevant distributions. We present a novel method based on a differentiable estimate of mutual information, a measure of non-linear dependency between variables, to construct a discriminant that is statistically independent of a number of selected observables, and so manages to preserve their distributions in the event selection. Our strategy is evaluated in a realistic setting, the analysis of the Standard Model Higgs boson decaying into a pair of bottom quarks. Using the distribution of the invariant mass of the di-b-jet system to extract the Higgs boson signal strength, our method achieves state-of-the-art performance compared to other decorrelation techniques, while significantly improving the sensitivity of a similar, cut-based, analysis published by ATLAS.

View on arXiv
Comments on this paper