36
159

Random Vector Functional Link Neural Network based Ensemble Deep Learning

Abstract

In this paper, we propose a deep learning framework based on randomized neural network. In particular, inspired by the principles of Random Vector Functional Link (RVFL) network, we present a deep RVFL network (dRVFL) with stacked layers. The parameters of the hidden layers of the dRVFL are randomly generated within a suitable range and kept fixed while the output weights are computed using the closed form solution as in a standard RVFL network. We also propose an ensemble deep network (edRVFL) that can be regarded as a marriage of ensemble learning with deep learning. Unlike traditional ensembling approaches that require training several models independently from scratch, edRVFL is obtained by training a single dRVFL network once. Both dRVFL and edRVFL frameworks are generic and can be used with any RVFL variant. To illustrate this, we integrate the deep learning networks with a recently proposed sparse-pretrained RVFL (SP-RVFL). Extensive experiments on benchmark datasets from diverse domains show the superior performance of our proposed deep RVFL networks.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.