ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11511
15
22

Inducing Syntactic Trees from BERT Representations

27 June 2019
Rudolf Rosa
David Marecek
    MILM
ArXivPDFHTML
Abstract

We use the English model of BERT and explore how a deletion of one word in a sentence changes representations of other words. Our hypothesis is that removing a reducible word (e.g. an adjective) does not affect the representation of other words so much as removing e.g. the main verb, which makes the sentence ungrammatical and of "high surprise" for the language model. We estimate reducibilities of individual words and also of longer continuous phrases (word n-grams), study their syntax-related properties, and then also use them to induce full dependency trees.

View on arXiv
Comments on this paper