ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.11462
14
25

Toward Simulating Environments in Reinforcement Learning Based Recommendations

27 June 2019
Xiangyu Zhao
Long Xia
Zhuoye Ding
Dawei Yin
Jiliang Tang
ArXivPDFHTML
Abstract

With the recent advances in Reinforcement Learning (RL), there have been tremendous interests in employing RL for recommender systems. However, directly training and evaluating a new RL-based recommendation algorithm needs to collect users' real-time feedback in the real system, which is time and efforts consuming and could negatively impact on users' experiences. Thus, it calls for a user simulator that can mimic real users' behaviors where we can pre-train and evaluate new recommendation algorithms. Simulating users' behaviors in a dynamic system faces immense challenges -- (i) the underlining item distribution is complex, and (ii) historical logs for each user are limited. In this paper, we develop a user simulator base on Generative Adversarial Network (GAN). To be specific, the generator captures the underlining distribution of users' historical logs and generates realistic logs that can be considered as augmentations of real logs; while the discriminator not only distinguishes real and fake logs but also predicts users' behaviors. The experimental results based on real-world e-commerce data demonstrate the effectiveness of the proposed simulator.

View on arXiv
Comments on this paper