8
5

A Simple Deep Personalized Recommendation System

Abstract

Recommender systems are critical tools to match listings and travelers in two-sided vacation rental marketplaces. Such systems require high capacity to extract user preferences for items from implicit signals at scale. To learn those preferences, we propose a Simple Deep Personalized Recommendation System to compute travelers' conditional embeddings. Our method combines listing embeddings in a supervised structure to build short-term historical context to personalize recommendations for travelers. Deployed in the production environment, this approach is computationally efficient and scalable, and allows us to capture non-linear dependencies. Our offline evaluation indicates that traveler embeddings created using a Deep Average Network can improve the precision of a downstream conversion prediction model by seven percent, outperforming more complex benchmark methods for online shopping experience personalization.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.