19
4

Software Engineering Practices for Machine Learning

Abstract

In the last couple of years we have witnessed an enormous increase of machine learning (ML) applications. More and more program functions are no longer written in code, but learnt from a huge amount of data samples using an ML algorithm. However, what is often overlooked is the complexity of managing the resulting ML models as well as bringing these into a real production system. In software engineering, we have spent decades on developing tools and methodologies to create, manage and assemble complex software modules. We present an overview of current techniques to manage complex software, and how this applies to ML models.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.