ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.10188
14
40

Deep Learning in a Computational Model for Conceptual Shifts in a Co-Creative Design System

24 June 2019
Pegah Karimi
M. Maher
N. Davis
Kazjon Grace
    HAI
ArXivPDFHTML
Abstract

This paper presents a computational model for conceptual shifts, based on a novelty metric applied to a vector representation generated through deep learning. This model is integrated into a co-creative design system, which enables a partnership between an AI agent and a human designer interacting through a sketching canvas. The AI agent responds to the human designer's sketch with a new sketch that is a conceptual shift: intentionally varying the visual and conceptual similarity with increasingly more novelty. The paper presents the results of a user study showing that increasing novelty in the AI contribution is associated with higher creative outcomes, whereas low novelty leads to less creative outcomes.

View on arXiv
Comments on this paper