This paper extends the notion of learning equilibrium in game theory from matrix games to stochastic games. We introduce Foolproof Cooperative Learning (FCL), an algorithm that converges to a Tit-for-Tat behavior. It allows cooperative strategies when played against itself while being not exploitable by selfish players. We prove that in repeated symmetric games, this algorithm is a learning equilibrium. We illustrate the behavior of FCL on symmetric matrix and grid games, and its robustness to selfish learners.
View on arXiv