ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.09712
14
60

Sequential estimation of quantiles with applications to A/B-testing and best-arm identification

24 June 2019
Steven R. Howard
Aaditya Ramdas
ArXivPDFHTML
Abstract

We propose confidence sequences -- sequences of confidence intervals which are valid uniformly over time -- for quantiles of any distribution over a complete, fully-ordered set, based on a stream of i.i.d. observations. We give methods both for tracking a fixed quantile and for tracking all quantiles simultaneously. Specifically, we provide explicit expressions with small constants for intervals whose widths shrink at the fastest possible t−1log⁡log⁡t\sqrt{t^{-1} \log\log t}t−1loglogt​ rate, along with a non-asymptotic concentration inequality for the empirical distribution function which holds uniformly over time with the same rate. The latter strengthens Smirnov's empirical process law of the iterated logarithm and extends the Dvoretzky-Kiefer-Wolfowitz inequality to hold uniformly over time. We give a new algorithm and sample complexity bound for selecting an arm with an approximately best quantile in a multi-armed bandit framework. In simulations, our method requires fewer samples than existing methods by a factor of five to fifty.

View on arXiv
Comments on this paper