108
6

Zero-shot Learning and Knowledge Transfer in Music Classification and Tagging

Abstract

Music classification and tagging is conducted through categorical supervised learning with a fixed set of labels. In principle, this cannot make predictions on unseen labels. Zero-shot learning is an approach to solve the problem by using side information about the semantic labels. We recently investigated this concept of zero-shot learning in music classification and tagging task by projecting both audio and label space on a single semantic space. In this work, we extend the work to verify the generalization ability of zero-shot learning model by conducting knowledge transfer to different music corpora.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.