ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.08464
34
18

A Hierarchical Architecture for Sequential Decision-Making in Autonomous Driving using Deep Reinforcement Learning

20 June 2019
Majid Moghadam
G. Elkaim
ArXivPDFHTML
Abstract

Tactical decision making is a critical feature for advanced driving systems, that incorporates several challenges such as complexity of the uncertain environment and reliability of the autonomous system. In this work, we develop a multi-modal architecture that includes the environmental modeling of ego surrounding and train a deep reinforcement learning (DRL) agent that yields consistent performance in stochastic highway driving scenarios. To this end, we feed the occupancy grid of the ego surrounding into the DRL agent and obtain the high-level sequential commands (i.e. lane change) to send them to lower-level controllers. We will show that dividing the autonomous driving problem into a multi-layer control architecture enables us to leverage the AI power to solve each layer separately and achieve an admissible reliability score. Comparing with end-to-end approaches, this architecture enables us to end up with a more reliable system which can be implemented in actual self-driving cars.

View on arXiv
Comments on this paper