18
9

Recovering shared structure from multiple networks with unknown edge distributions

Keith D. Levin
A. Lodhia
Elizaveta Levina
Abstract

In increasingly many settings, data sets consist of multiple samples from a population of networks, with vertices aligned across these networks. For example, brain connectivity networks in neuroscience consist of measures of interaction between brain regions that have been aligned to a common template. We consider the setting where the observed networks have a shared expectation, but may differ in the noise structure on their edges. Our approach exploits the shared mean structure to denoise edge-level measurements of the observed networks and estimate the underlying population-level parameters. We also explore the extent to which edge-level errors influence estimation and downstream inference. We establish a finite-sample concentration inequality for the low-rank eigenvalue truncation of a random weighted adjacency matrix that may be of independent interest. The proposed approach is illustrated on synthetic networks and on data from an fMRI study of schizophrenia.

View on arXiv
Comments on this paper