ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.04634
17
7

Scale Invariant Fully Convolutional Network: Detecting Hands Efficiently

11 June 2019
Dan Liu
Dawei Du
Libo Zhang
Tiejian Luo
Y. Wu
Feiyue Huang
Siwei Lyu
    ObjD
ArXivPDFHTML
Abstract

Existing hand detection methods usually follow the pipeline of multiple stages with high computation cost, i.e., feature extraction, region proposal, bounding box regression, and additional layers for rotated region detection. In this paper, we propose a new Scale Invariant Fully Convolutional Network (SIFCN) trained in an end-to-end fashion to detect hands efficiently. Specifically, we merge the feature maps from high to low layers in an iterative way, which handles different scales of hands better with less time overhead comparing to concatenating them simply. Moreover, we develop the Complementary Weighted Fusion (CWF) block to make full use of the distinctive features among multiple layers to achieve scale invariance. To deal with rotated hand detection, we present the rotation map to get rid of complex rotation and derotation layers. Besides, we design the multi-scale loss scheme to accelerate the training process significantly by adding supervision to the intermediate layers of the network. Compared with the state-of-the-art methods, our algorithm shows comparable accuracy and runs a 4.23 times faster speed on the VIVA dataset and achieves better average precision on Oxford hand detection dataset at a speed of 62.5 fps.

View on arXiv
Comments on this paper