Spring-Electrical Models For Link Prediction

Abstract
We propose a link prediction algorithm that is based on spring-electrical models. The idea to study these models came from the fact that spring-electrical models have been successfully used for networks visualization. A good network visualization usually implies that nodes similar in terms of network topology, e.g., connected and/or belonging to one cluster, tend to be visualized close to each other. Therefore, we assumed that the Euclidean distance between nodes in the obtained network layout correlates with a probability of a link between them. We evaluate the proposed method against several popular baselines and demonstrate its flexibility by applying it to undirected, directed and bipartite networks.
View on arXivComments on this paper