LIVEJoin the current RTAI Connect sessionJoin now

19
7

Extracting Visual Knowledge from the Internet: Making Sense of Image Data

Abstract

Recent successes in visual recognition can be primarily attributed to feature representation, learning algorithms, and the ever-increasing size of labeled training data. Extensive research has been devoted to the first two, but much less attention has been paid to the third. Due to the high cost of manual labeling, the size of recent efforts such as ImageNet is still relatively small in respect to daily applications. In this work, we mainly focus on how to automatically generate identifying image data for a given visual concept on a vast scale. With the generated image data, we can train a robust recognition model for the given concept. We evaluate the proposed webly supervised approach on the benchmark Pascal VOC 2007 dataset and the results demonstrates the superiority of our proposed approach in image data collection.

View on arXiv
Comments on this paper

We use cookies and other tracking technologies to improve your browsing experience on our website, to show you personalized content and targeted ads, to analyze our website traffic, and to understand where our visitors are coming from. See our policy.