ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1906.02881
11
0

Vertex Classification on Weighted Networks

7 June 2019
Hayden Helm
Joshua T. Vogelstein
Carey Priebe
ArXivPDFHTML
Abstract

This paper proposes a discrimination technique for vertices in a weighted network. We assume that the edge weights and adjacencies in the network are conditionally independent and that both sources of information encode class membership information. In particular, we introduce a edge weight distribution matrix to the standard K-Block Stochastic Block Model to model weighted networks. This allows us to develop simple yet powerful extensions of classification techniques using the spectral embedding of the unweighted adjacency matrix. We consider two assumptions on the edge weight distributions and propose classification procedures in both settings. We show the effectiveness of the proposed classifiers by comparing them to quadratic discriminant analysis following the spectral embedding of a transformed weighted network. Moreover, we discuss and show how the methods perform when the edge weights do not encode class membership information.

View on arXiv
Comments on this paper