59
31

Clustering by Orthogonal NMF Model and Non-Convex Penalty Optimization

Abstract

The non-negative matrix factorization (NMF) model with an additional orthogonality constraint on one of the factor matrices, called the orthogonal NMF (ONMF), has been found a promising clustering model and can outperform the classical K-means. However, solving the ONMF model is a challenging optimization problem due to the presence of both orthogonality and non-negativity constraints. Most of the existing methods directly deal with the orthogonality constraint in its original form via various optimization techniques. In this paper, we propose a new ONMF based clustering formulation that equivalently transforms the orthogonality constraint into a set of norm-based non-convex equality constraints. To deal with these non-convex equality constraints, we apply a non-convex penalty (NCP) approach to add them to the objective as penalty terms, leaving simple non-negativity constraints only in the penalized problem. One smooth penalty formulation and one non-smooth penalty formulation are respectively studied. We build theoretical conditions for the penalized problems to provide feasible stationary solutions to the ONMF based clustering problem, as well as proposing efficient algorithms for solving the penalized problems of the two NCP methods. Experimental results based on both synthetic and real datasets are presented to show that the proposed NCP methods are computationally time efficient, and either match or outperform the existing K-means and ONMF based methods in terms of the clustering performance.

View on arXiv
Comments on this paper