ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13675
11
1

2.5D Image based Robotic Grasping

31 May 2019
Yaoxian Song
Chun Cheng
Yuejiao Fei
Xiangqing Li
Changbin (Brad) Yu
ArXivPDFHTML
Abstract

We consider the problem of robotic grasping using depth + RGB information sampling from a real sensor. we design an encoder-decoder neural network to predict grasp policy in real time. This method can fuse the advantage of depth image and RGB image at the same time and is robust for grasp and observation height.We evaluate our method in a physical robotic system and propose an open-loop algorithm to realize robotic grasp operation. We analyze the result of experiment from multi-perspective and the result shows that our method is competitive with the state-of-the-art in grasp performance, real-time and model size. The video is available in https://youtu.be/Wxw_r5a8qV0

View on arXiv
Comments on this paper