ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13350
12
14

Threshold-Based Retrieval and Textual Entailment Detection on Legal Bar Exam Questions

30 May 2019
Sabine Wehnert
Sayed Anisul Hoque
W. Fenske
G. Saake
    ELM
    AILaw
ArXivPDFHTML
Abstract

Getting an overview over the legal domain has become challenging, especially in a broad, international context. Legal question answering systems have the potential to alleviate this task by automatically retrieving relevant legal texts for a specific statement and checking whether the meaning of the statement can be inferred from the found documents. We investigate a combination of the BM25 scoring method of Elasticsearch with word embeddings trained on English translations of the German and Japanese civil law. For this, we define criteria which select a dynamic number of relevant documents according to threshold scores. Exploiting two deep learning classifiers and their respective prediction bias with a threshold-based answer inclusion criterion has shown to be beneficial for the textual entailment task, when compared to the baseline.

View on arXiv
Comments on this paper