ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13331
14
4

Discriminative Clustering for Robust Unsupervised Domain Adaptation

30 May 2019
Rui Wang
Guoyin Wang
Ricardo Henao
    OOD
ArXivPDFHTML
Abstract

Unsupervised domain adaptation seeks to learn an invariant and discriminative representation for an unlabeled target domain by leveraging the information of a labeled source dataset. We propose to improve the discriminative ability of the target domain representation by simultaneously learning tightly clustered target representations while encouraging that each cluster is assigned to a unique and different class from the source. This strategy alleviates the effects of negative transfer when combined with adversarial domain matching between source and target representations. Our approach is robust to differences in the source and target label distributions and thus applicable to both balanced and imbalanced domain adaptation tasks, and with a simple extension, it can also be used for partial domain adaptation. Experiments on several benchmark datasets for domain adaptation demonstrate that our approach can achieve state-of-the-art performance in all three scenarios, namely, balanced, imbalanced and partial domain adaptation.

View on arXiv
Comments on this paper