ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13284
19
7

Identifying Classes Susceptible to Adversarial Attacks

30 May 2019
Rangeet Pan
Md Johirul Islam
Shibbir Ahmed
Hridesh Rajan
    AAML
ArXiv (abs)PDFHTML
Abstract

Despite numerous attempts to defend deep learning based image classifiers, they remain susceptible to the adversarial attacks. This paper proposes a technique to identify susceptible classes, those classes that are more easily subverted. To identify the susceptible classes we use distance-based measures and apply them on a trained model. Based on the distance among original classes, we create mapping among original classes and adversarial classes that helps to reduce the randomness of a model to a significant amount in an adversarial setting. We analyze the high dimensional geometry among the feature classes and identify the k most susceptible target classes in an adversarial attack. We conduct experiments using MNIST, Fashion MNIST, CIFAR-10 (ImageNet and ResNet-32) datasets. Finally, we evaluate our techniques in order to determine which distance-based measure works best and how the randomness of a model changes with perturbation.

View on arXiv
Comments on this paper