ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.13181
14
12

Recovery of binary sparse signals from compressed linear measurements via polynomial optimization

30 May 2019
S. Fosson
Mohammad Abuabiah
ArXivPDFHTML
Abstract

The recovery of signals with finite-valued components from few linear measurements is a problem with widespread applications and interesting mathematical characteristics. In the compressed sensing framework, tailored methods have been recently proposed to deal with the case of finite-valued sparse signals. In this work, we focus on binary sparse signals and we propose a novel formulation, based on polynomial optimization. This approach is analyzed and compared to the state-of-the-art binary compressed sensing methods.

View on arXiv
Comments on this paper