ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12261
24
8

KG-GAN: Knowledge-Guided Generative Adversarial Networks

29 May 2019
Che-Han Chang
Chun-Hsien Yu
Szu-Ying Chen
Edward Y. Chang
    GAN
ArXivPDFHTML
Abstract

Can generative adversarial networks (GANs) generate roses of various colors given only roses of red petals as input? The answer is negative, since GANs' discriminator would reject all roses of unseen petal colors. In this study, we propose knowledge-guided GAN (KG-GAN) to fuse domain knowledge with the GAN framework. KG-GAN trains two generators; one learns from data whereas the other learns from knowledge with a constraint function. Experimental results demonstrate the effectiveness of KG-GAN in generating unseen flower categories from seen categories given textual descriptions of the unseen ones.

View on arXiv
Comments on this paper