ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12181
15
0

Leveraging Semantics for Incremental Learning in Multi-Relational Embeddings

29 May 2019
A. Daruna
Weiyu Liu
Z. Kira
Sonia Chernova
ArXivPDFHTML
Abstract

Service robots benefit from encoding information in semantically meaningful ways to enable more robust task execution. Prior work has shown multi-relational embeddings can encode semantic knowledge graphs to promote generalizability and scalability, but only within a batched learning paradigm. We present Incremental Semantic Initialization (ISI), an incremental learning approach that enables novel semantic concepts to be initialized in the embedding in relation to previously learned embeddings of semantically similar concepts. We evaluate ISI on mined AI2Thor and MatterPort3D datasets; our experiments show that on average ISI improves immediate query performance by 41.4%. Additionally, ISI methods on average reduced the number of epochs required to approach model convergence by 78.2%.

View on arXiv
Comments on this paper