41
25

Optimal approximation for unconstrained non-submodular minimization

Abstract

Submodular function minimization is a well studied problem; existing algorithms solve it exactly or up to arbitrary accuracy. However, in many applications, the objective function is not exactly submodular. No theoretical guarantees exist in this case. While submodular minimization algorithms rely on intricate connections between submodularity and convexity, we show that these relations can be extended sufficiently to obtain approximation guarantees for non-submodular minimization. In particular, we prove how a projected subgradient method can perform well even for certain non-submodular functions. This includes important examples, such as objectives for structured sparse learning and variance reduction in Bayesian optimization. We also extend this result to noisy function evaluations. Our algorithm works in the value oracle model. We prove that in this model, the approximation result we obtain is the best possible with a subexponential number of queries.

View on arXiv
Comments on this paper