ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1905.12081
9
24

Semi-Supervised Learning, Causality and the Conditional Cluster Assumption

28 May 2019
Julius von Kügelgen
A. Mey
Marco Loog
Bernhard Schölkopf
    CML
ArXivPDFHTML
Abstract

While the success of semi-supervised learning (SSL) is still not fully understood, Sch\"olkopf et al. (2012) have established a link to the principle of independent causal mechanisms. They conclude that SSL should be impossible when predicting a target variable from its causes, but possible when predicting it from its effects. Since both these cases are somewhat restrictive, we extend their work by considering classification using cause and effect features at the same time, such as predicting disease from both risk factors and symptoms. While standard SSL exploits information contained in the marginal distribution of all inputs (to improve the estimate of the conditional distribution of the target given inputs), we argue that in our more general setting we should use information in the conditional distribution of effect features given causal features. We explore how this insight generalises the previous understanding, and how it relates to and can be exploited algorithmically for SSL.

View on arXiv
Comments on this paper